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The stability of normal combustion of a gas mixture with respect to
small hydrodynamic perturbations is examined. An explanation is given
of the physically contradictory conclusion obtained in {1] regarding

the destabilizing influence of viscosity. With the aid of the author's
inverse feedback condition [2] for a flame zone of finite thickness sta-
bility is investigated with allowance for viscous forces. The results
show good agreement with well-known experiments [3,4] on the insta-
bility of spherical flames,

The problem of the stability of normal combustion
of a viscous gas mixture with respect to small hydro-
dynamic perturbations is investigated below in the
following scheme. A plane flame, parallel to the y
axis and propagating in the direction of the negative
x axis, has a finite dimension L along this axis. To
the left and right of the zone L there are, respectively
flows of original mixture and of combustion products,
which are assumed to be constant in the undisturbed
state. Within the flame zone there is a continuous
transition from the parameters of the unburnt gas to
those of the burnt gas. The stability of the above com-
bustion system has previously been analyzed by Ein-
binder {1], who represented solutions of the linearized
Navier-Stokes equations of motion of a viscous fluid
and of the continuity equation in the form f(x) = exp(ihy +
+ ot} . Because of the constancy of the parameters
for the regions of the original mixture and the com-
bustion products, the function f(x) is represented
there as an exponential, while, within the flame zone,
f (%) finally satisfies a fourth-order differential equa~
tion which contains the viscosity 1 as an important
parameter. On the front and rear boundaries of the
flame zone four boundary conditions are formulated
for this equation, in the form of a smooth junction of
the perturbed state of this zone with the burnt and
unburnt gas regions. Later on, in 86 [1], Einbinder
makes a transition to a discontinuous flame front, let-
ting the dimensionless thickness gﬂéme =hL go to
zero, and retaining the viscosity effect n everywhere
in the formulas. As a result an equation is obtained
for determining the eigenvalue 6, from which follows
the conclusion regarding the destabilizing influence
of the viscosity. The reason for this result, contra-
dicting as it does the physical picture, is Einbinder's
inconsistent passage to the limit (£ = 0) in the solu-
tions for perturbations of a flame of finite thickness.
Indeed, as noted in §2 by Einbinder himself, the "vis-
cous"” thickness (£ is density, and velocity), or, in
dimensionless form, &g, =hL ~7. Therefore, the
correct passage to the limit £ =0 (L = 0) in the solu-
tions for perturbations of the flame must be accom-
panied by n =0, i e., by discarding the viscosity.
Einbinder, by taking L=0 (£=0), but n # 0, thus took
only partial account of the linear term in the expan-

sion of the solution for perturbations of the flame with
respect to viscosity 17, which invalidates the physically
inconsistent result that he obtained. Moreover, we
have a remark apropos the transition to a discontinu-
ous front: the behavior of a strong discontinuity is
controlled, in general, not by the differential equa-
tions, but by the physical laws of conservation of mass
flow and momentum flow across the discontinuity. With
the objective of explaining the viscous effect, we under-
take below to investigate the stability of a normal flame
flame (on the model described above) on the basis of the
the inverse feedback equation previously described in
[2], bringing in also the general theorems of the me-
chanics of continua [5] in order to join the burnt and
unburnt gas regions across the flame zone: these theo~
rems are the momentum and conservation of mass
theorems.

In a coordinate system fixed relative to a flame
propagating in the undisturbed state, let the chemical
reaction of combustion be concluded at time t on the
y axis, in such a way that the flame zone occupies
the interval -L =x = 0, and the gas flow proceeds in
the direction of the positive x axis. We denote the
parameters p, p, v, T, 1, x of the flow with subscripts
1, 2, and 3 relating to the regions: original mixture
(x > 0), combustion products (x > 0), and flame (~L <
< x < 0), For gases, the dependence of viscosity on
temperature ordinarily [5] has the form

nT—m = const (0.5 <{ m < 1). 1)

The small velocity of normal combustion permits us
to assume that the medium incompressible. Because
of the strong dependence of the rate of the chemical
reaction on temperature, the latter takes place in a
narrow range of temperature, such that the reaction
zone comprises a relatively small part of the total
width L of the flame. Also, as noted in [2], the lack
of dependence, in the framework of an incompressible
medium, of the structure of the reaction zone on hy-
drodynamic perturbations allows us to exclude it, in
general, from examination and to model the flame by
a thermal wave ahead of the heated plane x = 0. Fol-
lowing [2], to simplify the internal structure of the
flame zone, we replace the continuously changing
flow of gas in this region by a constant stream with
value of the parameters averaged over its thickness
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Leaving aside the change in thickness of the flame zone,
we may assume that a small random perturbation
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of the combustion processes leads to an identical
displacement of its front and rear boundaries and may
be represented in the form of traveling wave of length
A

e(y,t)=Clhy=Cexp (thy —int), h=2rhr (3)
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Perturbed state of the flame zone

The result is a perturbed state of flow described by
the Navier-Stokes equations linearized in the neighbor-
hood of the unperturbed state
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where the primes indicate corresponding perturbations
of the velocity and pressure components. Solutions of
this last system, satisfying the natural requirement

of being finite when Ix |+, are represented, in con-
formity with (3), in the following manner:
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(when S = 3, o5~ should be replaced by q).
Thefirstterms{garethe perturbations of pressure-
velocity (the limiting values of the acoustic waves
within the framework of an incompressible medium),
while the second terms ¢g are turbulent perturbations
which, in contrast with the ideal case of [2], in the
viscous mixture scheme that we have assumed are not
only carried by the stream from the flame into the
original mixture and inside the flame zone, However,
it is not difficult to verify that the perturbation ¢, in
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region 1 may be neglected in comparison with the
other perturbations, since it diminishes extremely
rapidly with x. In fact, for gases in ordinary condi-
tions [5], ¥ ~1.5¢ 107% cm?%/sec, while the normal
combustion velocity, v{ ~ 1 m/sec. Hence ky, =~ vy/v;=
~10° 1/m, so that, for even x ~—10~* m, which does
not exceed the width of the flame zone observed in the
experiment, it follows that exp (hy;x) ~1075, or that
the term B¢ may be neglected. To simplify the analy-
sis, we shall also discard the perturbation Bs¢s in the
flame zone. Of course, by neglecting in this way the
diffusion of turbulence from the chemical reaction
zone within the flame, we have lowered somewhat, a
priori, the stablizing effect of viscous dissipation
within the flame zone, which cannot play an important
role in the subsequent investigation since we shall be
interested in the very small relative thickness L/A of
this zone. After excluding from consideration terms
with B; and Bj, the perturbations (5) in regions 1 and
3 coincide with those for the ideal case [2], which
permits us to apply the appropriate inverse feedback
equation obtained in [2]. The latter which describes
the interaction of hydrodynamic perturbations with

the internal structure of the flame zone, or, more
precisely, expresses the change of normal combustion
velocity under the influence of these perturbations,
has the form

t B
__Qf. =, 0vsx dr
at Ox
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For an expression of the perturbations in the internal
region of the flame, 3, in terms of those in the origi-
nal mixture region, 1, we make use of Loitsyanskii's
mass change theorem [5]. For this we take the ele-
mentary rectangle abed (see figure) asa control sur-
face, occupying a small region about x = ~L, and
formed by the coordinate lines in such a way that the
front boundary AB of the perturbed flame always stays
inside it. Then, linearization of the above theorem in
the neighborhood of the undisturbed state finally gives
vix = Qvix, i.e., Az = q4;.

The mechanical conditions for joining the streams
of burnt and unburnt gas through the flame zone may
be obtained with the aid of the theorems relating to
change of mass and momentum [5]. As a control sur-
face we choose the elementary curvilinear quadrilat-
eral ABCD (shaded in figure) formed by lines AB and
CD parallel to the x axis and by small segments of the
front and rear boundaries of the perturbed flame zone,
The above theorems may be written in the form [5]
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where ¢ is the area of the entire control surface, and
V is the volume hounded by it. The velocity vector ¥,
its normal component vy, and the stress p, must be

calculated relative to this fixed control surface, i. e.,
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relative to the perturbed state of the flame zone, if
we depart, in accordance with our model, from a
change in its thickness. Further, we linearize (7) in
the neighborhood of the unperturbed state. Then, from
the first equation of (7), under the assumption that the
medium is incompressible, we obtain
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In the linearization, the second equation of (7) is pro-
jected along the normal and the tangent to the flame
zone boundarv AB(CD) Here the perturbation of the
stressp pn pnldeal + an1scls composed of the pertur-
bation of the pressure of the ideal medium and the
viscous stress, expressed according to well-known
formulas [5] in terms of the perturbed velocities. The
result is that from (7) we have, for the normal and
tangential directions respectively
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Substituting the solutions (5) and (3) into the condi-
tions (6), (8), and (9) for joining the flows of burnt
and unburnt gas through the flame zone, we come to a
linear system of homogeneous equations relating to
the constants A, A,, By, C, for which the determi-
nant gives an equation for finding the eigenvalue z:
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From the fact that the Prandtl number is constant
for gases, we derive [5] a relation between the thermal
diffusivity and the viscosity x{=v,;. Hence the viscous
and the thermal thicknesses of the normal flame are
of the same order, this being expressed, as is well-
known [1], in the form of L = x/v;. Therefore, for
the parameter 8; which depends on viscosity and ap-
pears in (10), we have § = 2£{, Experiments with
spherical flames have shown [3,4] that instability of
normal combustion begins to appear only at very small
£. Therefore, a solution of (10) may be sought in the
form of the expansion z = zy+ zi£ + ....

Restricting ourselves to a linear approximation
with respect to £, we obtain from (10)
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Hence it is seen immediately that for an unstable root
zg > 0 of the zero-order approximation, we always
have zy;, 213< 0. The term z;, reflects the viscous
effect, and (11), regardless of the erroneous conclu-
sion of Einbinder [1], points to the stabilizing influ~
ence of the viscous forces, in conformity with the
physical nature of this dissipative factor, As far as
the other mechanism of energy dissipation, that due
to thermal conduction. is concerned. it mav be veri-
fied, by a method similar to the foregoing, that its
influence is an effect of the order of the square of the
Mach number of the main flow, which means that it is
negligible in the framework of the supposed incom-
pressibility of the medium.

In making a comparison with experimental observa-
tion, one would expect that perturbations of maximum
instability should first be realized experimentally,
those for which the most rapid growth of amplitude
with time has been achieved. Then, from an extremum
condition for the single parameter available to us, h:
d(~iw)dh = 0, we find the wavelength of such maximally
unstable perturbations of the flame:

& = 2nl /Ay = —2/22;. (12)

Hence, putting o =12, and m = 1 for oxygen mixtures,
following calculations according to Eqs. (11) and (12},
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we have the following expected wave dimension for the
perturbation that increases the most rapidly with
time:

AL = 0.7.10°.

In [3,4] the results are presented of experiments
which were performed on the propagation of spherical
flames in ordinary conditions inside a soap bubble,
for a mixture of 67.5% oxygen and 32,5% acetylene
(¢ ~ 12, according to [6]). Instability of the flames
was observed beginning with r/L =10%,

The upper curve of Fig, 7 of [3] describes the de-
pendence of the width of an inhomogeneity on the flame
sphere (this corresponds to A in our notation) on its
radius r, while the mean line expresses the amplitude
of these perturbations, Taking the data from the graph
for the first experimental point, i.e., the point satis-
fying the least amplitude of perturbation on the sphere
of the flame, we have 8x ®A <4 mm, r =25 mm.
Thus, the relationship r/A =7 occurs, and the pertur-
bations observed in the experiments begin to exhibit
instability when their wavelength reaches A/L ~1.4.

« 10% Then the amplitude of the inhomogeneities on the
perturbed flame sphere is equal to 2 mm, As it de-
creases, r/A inereases. Thus, for 1 mm, r/A ~11
already, so that the instability begins to appear with

a wavelength of A/L =0.9+ 103, The latter agrees well
enough with our theoretical value for the wavelength
Am/L = 0.7+ 10% of the maximally unstable perturba-~
tion, if we take into account, in addition, that we
lowered the stabilizing effect somewhat by neglecting
the diffusion of turbulence inside the flame zone.

In conclusion we note that the validity of the com-
parison that we have made of a theoretical investiga-
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tion of a plane flame with an experimental investiga-
tion for a spherical flame, is based on the results of
Eckhaus [7], who showed, that with r/L >1, the
curvature of a spherical flame has no influence on the
velocity of propagation of combustion.

NOTATION

p is the pressure; p is the density; v is the velocity;
T is the temperature; n is the viscosity; nis the ther-
mal diffusivity; A is the wavelength of perturbation;
w is the unknown eigenvalue; L is the thickness of
flame; h is the wave number; € is the displacement of
flame; T is the characteristic combustion time; a =
=Vy/Vy; v is the kinematic viscosity; g = 2hvy/vy.
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